Property |
Value |
dbo:abstract
|
- En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. Les funcions gaussianes amb c2 = 2 són les autofuncions de la transformada de Fourier. Això significa que la transformada de Fourier d'una funció gaussiana no és només altra gaussiana, sinó a més un múltiple escalar de la funció original. (ca)
- En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. Les funcions gaussianes amb c2 = 2 són les autofuncions de la transformada de Fourier. Això significa que la transformada de Fourier d'una funció gaussiana no és només altra gaussiana, sinó a més un múltiple escalar de la funció original. (ca)
|
dbo:wikiPageID
| |
dbo:wikiPageRevisionID
| |
dct:subject
| |
rdfs:comment
|
- En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. (ca)
- En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. (ca)
|
rdfs:label
|
- Funció gaussiana (ca)
- Funció gaussiana (ca)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |