En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2.

Property Value
dbo:abstract
  • En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. Les funcions gaussianes amb c2 = 2 són les autofuncions de la transformada de Fourier. Això significa que la transformada de Fourier d'una funció gaussiana no és només altra gaussiana, sinó a més un múltiple escalar de la funció original. (ca)
  • En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. Les funcions gaussianes amb c2 = 2 són les autofuncions de la transformada de Fourier. Això significa que la transformada de Fourier d'una funció gaussiana no és només altra gaussiana, sinó a més un múltiple escalar de la funció original. (ca)
dbo:wikiPageID
  • 600421 (xsd:integer)
dbo:wikiPageRevisionID
  • 17226999 (xsd:integer)
dct:subject
rdfs:comment
  • En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. (ca)
  • En matemàtiques la funció gaussiana (en honor a Carl Friedrich Gauss), és una funció definida per l'expressió: on a, b i c són constants reals (a > 0). La gràfica de la funció és simètrica amb forma de campana, coneguda com a campana de Gauss. El paràmetre a és l'altura de la campana centrada en el punt b, determinant c l'ample d'aquesta. Les funcions gaussianes s'utilitzen freqüentment en estadística corresponent, en el cas que a sigui igual a , a la funció de densitat d'una variable aleatòria amb distribució normal de mitjana μ=b i variància σ2=c2. (ca)
rdfs:label
  • Funció gaussiana (ca)
  • Funció gaussiana (ca)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is foaf:primaryTopic of